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ABSlRACT 

A non-linear theory for the equilibrium deformation 

of homogeneous isotropic shells is derived and compared 

with the classical three dimensional non-linear theory 

of elasticity. 
To obtain the shell theory, let U 1 and U 2 be 

let U 3 be a displacement normal to the middle surface. 

displacements tangent to the undeformed middle surface and 

The 

displacement fields considered are restricted by requiring 
1 2 that U and U be nth degree polynomials in 8 and U3 be 3 

an (n+l)st degree polynomial in 8 where 8 is the undefomed 

distance to the middle surface along a normal line. 

ing the displacements in this way, the potential energy of 

the shell becomes a f’unctional of the 3n& coefficients of 

the displacement polynomials. Requiring that the potential 

energy be stationary with respect t o  variations of the 3n+4 

coefficients, gives the equilibrium equations and surface 

traction boundary conditions of the shell theory. 

3 3 
Restrict- 

The shell theory is compared with the classical three 

dimensional theory by examining the erram which result when 

displacements satisfying the equilibrium equations and surface 

traction boundary conditions of the shell theory are 

substituted i n t o  those of the classical three dimensional 

theory. 

an equilibrium equation, a surface traction boundary condition 

at the edge, and a surface traction boundary condition at a 

Let Eq, Ee and Ef denote any error resulting from 
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face,  respec t ive ly ,  of t he  c l a s s i c a l  theory. It i s  shown 

that Eq, Ee and t h e i r  der iva t ives  have a stated number of 

zeros  along each l i n e  normal t o  the  m i d d l e  surface,  the 

number of zeros depending on n and the  number of d i f f e r e n t i a -  

t i o n s  of  t h e  e r r o r  w i t h  respect  t o  8 3' 

t h e  shel l  thickness and deformation are small enough, and 

if the body forces  and surface t r a c t i o n s  a t  t h e  faces  and 

t h e i r  de r iva t ives  a r e  small enough, then, a t  po in t s  not too  

near  the  edge, Ef and its der iva t ives  are s i g n i f i c a n t l y  

small i f  n i s  large enough, and E and i ts  der iva t ives  are 

s i g n i f i c a n t l y  s m a l l  throughout the thickness if n is large 

Furthermore, i f  

9 

enough and there are not  too  many d i f f e r e n t i a t i o n s  of E 9 
wi th  respec t  t o  8 

t he  low degree terms i n  the  displacement polynomials and 

t h e i r  de r iva t ives  are more s i g n i f i c a n t  than t h e  high 

degree terms a t  poin ts  not  too near t h e  edge (at least t h i s  

i s  always t r u e  i f  the  difference i n  degrees of t he  two terms 

i s  g r e a t e r  than o r  equal two).  

Also, under t h e  previous r e s t r i c t i o n s ,  3 .  

i v  
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INTRODUCTION 

T h i s  paper presents  a non-linear theory f o r  t he  equilibrium 

deformation of homogeneous i so t ropic  s h e l l s  and makes a compar- 

i son  between the  s h e l l  theory and the  c l a s s i c a l  t h ree  dimensional 

non-linear theory of e l a s t i c i t y .  These a re  ca l led  the  s h e l l  

theory and the  c l a s s i c a l  theory i n  the  following. I n  the  process 

es t imates  a r e  derived which  are of considerable i n t e r e s t  i n  

t h e i r  own r i g h t .  

The c l a s s i c a l  theory may Le obtained by requi r ing  t h a t  

t h e  p o t e n t i a l  energy of t h e  s h e l l  be s t a t iona ry  w i t h  respect 

t o  a l l  possible  displacements. To obtain the  s h e l l  theory a 

r e s t r i c t e d  s e t  of displacements i s  admitted i n t o  the  po ten t i a l  

energy as follows. Let and be parameters f o r  t h e  unde- 

formed middle surface.  Le t f ( e1 ,o2 )  be the  pos i t i on  vector  

t o  the  undeformed middle surface,  3 ga = q(a ai? = 1,2) be tangent 
--c 

g p  E* 
IE1XE,I 

vectors ,  and = be a u n i t  normal vector  t o  the  unde- 

formed middle surface.  Let 8 be the  undeformed dis tance t o  

the  middle surface along a normal l i n e ,  t he  s ign  of 8 being 

chosen so t h a t  8 i s  pos i t i ve  on t h e  s ide  of the  midd le  surface 

towards which poin ts  and is  negative on the o ther  s ide .  

Then t h e  displacement vector  5 can be expressed i n  the  form 

u = U i z i  (as  usual,  La t in  indices  assume the  values 1,2,3; 

Greek indices  assume the  values 1,2; and repeated ind ices  are 

3 

3 

3 

3 

-e 

summed). For t he  s h e l l  theory only those displacement vectors  

a r e  admitted f o r  which U1 and U2 a r e  n t h  degree polynomials i n  
3 0 and U i s  an ( n + l ) s t  degree polynomial i n  8 the  coe f f i -  

c i e n t s  of the  polynomials being funct ions of el and e2.  With 
3 3’ 
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t h i s  r e s t r i c t i o n  the  p o t e n t i a l  energy becomes a func t iona l  of 

t he  3 n + 4  coef f ic ien ts  of these polynomials. Requiring t h a t  

t h e  po ten t i a l  energy be s t a t iona ry  gives  the  equilibrium 

equations and surface t r a c t i o n  boundary conditions of t h e  

s h e l l  theory.  

The s h e l l  theory i s  compared w i t h  t he  c l a s s i c a l  theory 

by examining the  e r r o r s  which r e s u l t  when displacements 

s a t i s fy ing  the  equilibrium equations and surface t r a c t i o n  

boundary conditions of t he  s h e l l  theory a r e  subs t i t u t ed  i n t o  

the  equilibrium equations and surface t r a c t i o n  boundary 

conditions of t he  c l a s s i c a l  theory.  I n  doing t h i s  it i s  

assumed tha t  t h e  displacements s a t i s fy ing  t h e  s h e l l  theory 

have as many continuous der iva t ives  as desired o r  needed. 

After arranging the  equilibrium equations and surface t r a c t i o n  

boundary conditions of t he  c l a s s i c a l  theory i n  a convenient 

form, E ( i  

e qui1 i b  r ium 

the  surface 

denotes the  

i q  
= 1,2,3) denotes the  e r r o r s  obtained from t h e  

equations,  Eie denotes the  e r r o r s  obtained from 

t r a c t i o n  boundary conditions a t  t h e  edge, and Eif 

e r r o r s  obtained from the  surface t r a c t i o n  boundary 

and aq' 'ae, conditions a t  e i t h e r  face.  It i s  shown t h a t  E 

t h e i r  der iva t ives  have n - k -  1 zeros along each l i n e  which i s  

normal t o  the middle surface i n  the  undeformed s h e l l ,  and E 3 q' 
, and t h e i r  der iva t ives  have n - k zeros along each such l i n e  where E3e 

k i s  the  number of d i f f e r e n t i a t i o n s  of t h e  e r r o r s  w i t h  respect  

Furthermore, i f  n i s  l a rge  enough, i f  t he  s h e l l  thickness 

i s  s m a l l  enough r e l a t i v e  t o  the  dis tance t o  t h e  edge and r e l a t i v e  
3 '  t o  e 

2 



t o  t h e  geometry of the  undeformed s h e l l ,  i f  the  s t r a i n s  and 

displacement gradients  a re  small enough a f t e r  a simplifying 

r i g i d  transformation, and if the  prescribed surface t r a c t i o n s  

a t  t he  faces  and t h e i r  der ivat ives  and the  body forces  and 

t h e i r  der ivat ives  a re  small enough, then Eiq, Eif, and t h e i r  

der iva t ives  a re  s ign i f i can t ly  small provided the  der iva t ives  

of t he  E do not have too many d i f f e ren t i a t ions  with respect  
i q  
I n  many cases n i s  large enough f o r  the  above i f  

The meaning of " s m a l l  enough'' depends on n and the  
3 -  t o  e 

n > 3. 

s t r a i n  energy dens i ty  funct ion.  It i s  a l so  shown that under 

the previous r e s t r i c t i o n s  the  low degree terms i n  the  displace- 

ment polynomials and t h e i r  der ivat ives  a re  more s ign i f i can t  

than the  high degree terms ( t h i s  i s  t r u e  a t  l e a s t  when the  

difference i n  t h e  degrees of the  terms i s  g rea t e r  than o r  

equal two). 

- 

The most d i f f i c u l t  t a s k  i n  showing the  above i s  the  

der ivat ion of es t imates  f o r  the der5vatives of the  s t r e s s e s  

and displacement gradients .  The procedure i s  t o  obta in  

est imates  f o r  t he  L norms f o r  the  various funct ions and use 

Sobolev s inequal i ty  f o r  a slab t o  obta in  pointwise estimates.  

The work of F. John was an indispensible  guide i n  obtaining 

2 

1 

John, F., Estimates f o r  the Derivatives of the S t resses  i n  
a Thin Shel l  and I n t e r i o r  Shel l  Equations, Comm. Pure Appl. Math., - VOl. XVII I, 196 5, PP* 239 26'/* 
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these estimates (although the  d e t a i l s  of t h e  ca l cu la t ion  a r e  

qui te  d i f f e ren t  he re ) ,  and t h i s  author acknowledges h i s  

indebtedness t o  t h a t  work. The extent  of t h e  indebtedness t o  

t h e  work of F. John w i l l  be c l e a r  t o  everyone familiar w i t h  h i s  

work and w i l l  not be mentioned f u r t h e r .  Appreciation i s  a l s o  

hereby expressed t o  F. John, J .  J .  Stoker,  and W .  T .  Koiter 

f o r  valuable discussions on t h e  work. 

2 1. Pseudo-tensor notat ion.  

Consider a f ixed  rectangular Cartesian reference frame X ,  

and l e t  ?'(e,,@,) be the  pos i t i on  vector  from t h e  o r i g i n  of 

t h i s  reference frame t o  the  middle undeformed surface.  

A middle undeformed surface i s  considered such t h a t  normals 

t o  it do not i n t e r s e c t  f o r  le 1 < h, whenever h i s  s m a l l  enough, 

and such t h a t  t he  surface and i t s  boundary a r e  smooth enough 

so t h a t  subsequent uses of t h e  divergence theorem a r e  v a l i d .  

The undeformed s h e l l  i s  then defined t o  be t h e  region ( e  I < h .  3 -  
Let t ing  ?be the  pos i t i on  vector  from t h e  o r i g i n  t o  an a r b i t r a r y  

point  (xl,x 

3 -  

x ) i n  t h e  s h e l l ,  we a l s o  assume tha t  t h e  middle 
2' 3 

Although severa l  of t h e  quan t i t i e s  introduced here have 
establ ished names such as two point  tensors  o r  s h i f t e r s  of one 
s o r t  o r  another, t he  one term "pseudo-tensor'' i s  introduced t o  
keep the  nomenclature t o  a minimum. See Erickson, J .  L . ,  
Tensor Fields ,  Handbuch der  Physik, Vol. III/l, Springer-Verlag, 
196% PP. 794-850- 
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undeformed surface i s  smooth enough so that  

def ines  a re la t ionship  between the  coordinates x 

which has as many continuous der ivat ives  as needed i n  the 

following, the same being true f o r  the inverse  re la t ionship .  

and ei i 

Let 

Then the quan t i t i e s  g 

usual  covariant and contravariant  metric tensors  f o r  the  

middle undeformed surface.  Also g = zu = 0 and 

g33 i' 

5 J 

and gaB a re  the  components of the  ag 

3a 
= z3 = 1. Fina l ly  gi5 = Ei. @, zi @ = 6 5  and z3 = $. 
The quan t i t i e s  ai and A! a r e  defined t o  be the  components 

of t he  vectors  Ei and Bi w i t h  respect  t o  the  reference frame X 

as follows: 

(1.3) 

Then 

Given any indexed s e t  of funct ions associated w i t h  the  

X-frame, say d ( t h e  number of indices  i s  not important) ,  w e  i ;i - 
assoc ia te  indexed s e t s  Dij, Di j , D j ,  and Di5 w i t h  the  curv i l inear  

5 



coordinates ei as follows: 

= d..), both 
i - di j 3 1  

When the indexed set dij i s  symmetric (i.e. 

and Dij 
D L j  and D will be denoted by DL The functions dij . .  3 ‘  - j 2  - -  
( o r  D L j ,  DiJ,  DLJ) will be called X- and 8-components of the 

same pseudo-tensor. 
i k  j$  Dij = g g Dka, etc., so that the quantities gij 

be used to raise and lower indices of the 8-components of 

pseudo-tensors in the same way that the indices of the components 

of tensors are raised and lowered using a metric tensor. 

It i s  easily seen that Dij = gikD k j, 

and g i j  can 

( o r  g i j ,  6:) are X- and @-components 
and g i j  J 

Observe that €ji j  

of the same pseudo-tensor. 

of displacement, then ui and Ui are X- and 8-components of the 

same pseudo-tensor. 

Also i f  ui denotes the X-components 

Pseudo-tensors have a contraction principal of the same 

sort as ordinary tensors. Let cij and C i j  (or dijk and Dijk) 
be X- and &components of the same pseudo-tensors. Then 

i i 
Cii = Ci = C i (or diij and Di are X- and 8-components of 

i 

the same pseudo-tensor). 

are X- and 6-components of a pseudo-tensor, 
i j  and Dij  

If d 

D i j  Ik’ D i j  Ikj’ etc. are defined to be the 6-components of the 

6 



2 a dij 
Xk dx , etc. as X-components. j 

Xk 
pseudo-tensors having 'a , a 

a 
8 m n adam i.e. ~~~l~ = a a a k , etc. Indices of ~~~l~ are raised 

and lowered the same as those of the @-components of other 

pseudo-tensors. 
ij It follows immediately that gij I k  = 0, g 

Let b 

= 0, etc. 

= z3 - Za,@ be the components of the second ag 
fundamental form of the middle undeformed surface ( , a  means 

a =). For convenience let b = b3i = 0 ae and ,i will mean a 
a 1 13 

and raise the indices of the quantities bij just as if they 

were the 8-components of a pseudo-tensor. Then let 

( B j )  = ( E j - 8  b ) (observe that Ba = 9 = 0 , 3 = 1). 

The indices of the B! are a lso  raised and lowered just as if 
J 

they were 0-components of a pseudo-tensor. Then H = Tba l a  is the 

mean curvature and K = det(b ) is the Gaussian curvature of the 

middle undeformed surface. For convenience let C = 1- 2 H 8  + K 8  

i i i -1 
3 j  3 a 

a 
B 

2 
3 -  3 

Quantities r t j  are defined by 
= -rijzk. The quantities r' are the usual Christoffel 

= ri!jzk. Then also i,j 
+i 

symbols for the metric of the middle undeformed surface and 
, j  aB 

i i i rTj = bij , r 3 J  . = -b , rj3 = 0 .  

In terms of the X-components of zi and zi one has 

( 1 . 4 )  

+ +  From x = r + e3E3 one obtains 

7 



so t h a t  

If di and Di a r e  X- and 8-components of t h e  same pseudo- 

tensor ,  

k j r t  
= a i j t j  a B A ( A E D , , ~  - r z r A i D s )  

S imi l a r ly  

(1.7) 

If d i j  and Dij a r e  X- and @-components of t h e  same 

pseudo-tensor , 

8 



Di 

(1.8) 

'i j 

2 .  Introduct ion of t he  c l a s s i c a l  theory and s h e l l  theory.  

L e t  u+ denote the X-components of displacement, 
A 

a U  3 U  auk auk 
e i j - 2 5  -I( i +  ax, j +  q 3 i C  ) be t h e  s t r a i n s ,  and l e t  

3 
s = eii , s2 = e .e.. , and s = eijejkeki be the  s t r a i n  1 iJ J 1  3 
inva r i an t s .  

For homogeneous i so t rop ic  mater ia l s ,  t he  s t r a i n  energy 

p e r  u n i t  undeformed volume, W ,  i s  a funct ion of sl, s2 ,  and s 3 -  

I n  order  t h a t  the  s t r a i n  energy densi ty  funct ion agrees t o  

lowest order  terms w i t h  that  of the  l i n e a r  theory of e l a s t i c i t y ,  

it follows from Taylor ' s  theorem t h a t  

where A and ~1 a r e  the  Lame/ constants  and W1, W2, W3, and w4 

a n d  s which a re  assumed t o  have as a re  funct ions of sly s2, 3 
many de r iva t ives  as necessary f o r  the  following. 

9 



Let 

so that  

t i j  = Ae 6 + 2peij + z i j  kk i j  

i s  quadratic i n  the  e w i t h  c o e f f i c i e n t s  depending where z i j  

on t h e  e 

Let 

k,l 

k.4 

J 

be the  Kirchhoff s t r e s s e s .  

functions of t he  displacement gradients  and a re  defined f o r  

The qij a r e  always t r e a t e d  as 

a l l  displacements even if the  displacements a r e  not so lu t ions  

of e i t h e r  the  she l l  theory or the c l a s s i c a l  theory.  

Let ci+ be the  X-components of surface t r a c t i o n  ( fo rce  

per  u n i t  undeformed area) on the  face  8 

the  corresponding components on t h e  f ace  8 = -h. 

h, and l e t  Ti be 3 =  - 
3 

L e t  f i  be t h e  X-components of body fo rce  ( force  per  u n i t  

undef ormed volume ) . 
L e t  Ti, be the  X-components of surface t r a c t i o n  ( fo rce  

per  u n i t  undeformed area) at the  edge of the  she l l .  

Then the equilibrium equations of t h e  c l a s s i c a l  theory a re  

10 



and a t  the  boundary 

, 

hi j ‘ax.+ f i  = 0 
J 

where the  ni are the X-components of t h e  u n i t  ou te r  normal 

vec tor  t o  t h e  shel l .  

Now l e t  c a p i t a l  l e t t e r s  denote the 6-components of 

pseudo-tensors whose X-components a r e  denoted by the  lower 

case l e t t e r s .  Then, using the contract ion p r inc ipa l  f o r  

pseudo-tensors, the  c l a s s i c a l  theory becomes 

( 2 . 3 )  

’’ f o r  6 = h 3 
<i+ = Q 

i3 f o r  6 = -h i 
Q - = - Q  3 

qie = ai%, a t  the  edge 

s ince  Na = 0, N3 = 21 for 8 = +h and N = 0 on t h e  edge. 3 3 
To obta in  the  s h e l l  theory, consider the  p o t e n t i a l  energy 

6 -h e3=- h edge 3- shel l  

11 



where dv is the undeformed volume element and dS i s  the 

undeformed area element. Letting a supper dot denote the 

variation, the requirement that 0 F i s  stationary becomes 

- f .u. )dv - IJ Ti+iidS 
8 -h 3- shell 

- 9. 1- 6.dS 1 - RTieGidS = 0 . 
e3=-h edge 

After using the divergence theorem, this becomes 

0 = $JJ( agij~ + fi)iidv + - - q. )iidS 1+ 
J 8 -h 3-  shell 

+ J’J (qijnj - - q.  1- + J’ (qijnj - - q. le . 
e3=-h edge 

Using the contraction principal and the fact that the Ui 

are the 8-components of the pseudo-tensor whose X-components 

are the ui, one has 

0 = fS(Qij I + F i *  )Uidv + Jl ( Q i j N j  - -i Q +)iidS 
shell 8 -h 3- 

12 



Since Na = 0 ,  N = It1 for 6 3 = sth and N 3 = 0 on the edge, 3 
the above becomes 

0 = -[S(Q~~I + F i o  )Uidv + JJ ( Qi3 - Qi+)GidS 
6 -h 3- shell 

edge 63=-h 

But dv = CdAd6 and dS = CdA for 0 = +_h where dA is the 3 3 
element of undeformed area on the middle surface. Also 

dS =@ds d0 3 at the edge where a=i/,6; - 2e3b; + 6*babr)A'A 3 Y B  Y' 

= h a p  is the unit tangent vector to the boundary curve 

on the undeformed middle surface, and s is the undeformed arc 

length of the boundary curve on the middle surface. 

for the displacements admitted into the potential energy to 

In addition, 

obtain the shell theory, 

where Uuk and U are arbitrary functions of and 820 

Hence 
3k 



+ [ ( Q 3 3  - -3 Q +)Cek] 3 e3=h - [ (Q33 + 

n h 

From t h i s  a re  obtained t h e  equilibrium equations 

f h  

14 



.and the edge boundary conditions 

h 

j 
I f ($'NB - -3 Q ) e  k &de3 = O(k = 0 ,1 ,2y . . . , n+ l )  

(QagNg - -a Q e)@3(4d€3 k .  = O(k = Oyly2y...yn) 
-h I 

( 2 . 5 )  < 
e 3  

1 -h 
L 

of the  s h e l l  theory.  

Le t t i ng  

one has ai = qi+ when 8 = h and -i Q = -Q -i - when 6 = -h. 
3 3 

I 
Then t h e  equilibrium equations become 

e3=h ! I  (Qa51j+Fa)C6363 = [(Qa3-aa)C63], - (k = Oyly2y...yn) 
I 3-- 
I -h 

From these  equilibrium equations it follows t h a t  

[Q i J l j  + Fi)C] Pde3 =[[(Qi3 - Qi)c] a p f  8 3- -h 

,a Y 8 - h '  3-- ! 
'> -h 

e t c .  where P i s  an a r b i t r a r y  polynomial i n  6 

i # 3 and of degree n + l  i f  i = 3 .  

of degree n i f  3 



S i m i l a r l y  

f h  

i -h 

e t c .  a t  t he  edge of t h e  s h e l l  where P has t h e  same meaning 

as above. 

3. General comparison of t h e  s h e l l  theory and c l a s s i c a l  theory.  

This comparison o f  t h e  two t h e o r i e s  i s  ca l led  a general  comparison 

because i t  i s  va l id  f o r  a l l  so lu t ions  t o  t h e  s h e l l  theory,  regard less  

of t h e  thickness of t h e  s h e l l  o r  t h e  s i z e  of t h e  deformation. 

T h i s  comparison i s  contained i n  the  following theorem. 

Theorem (3.1):  Let t h e  displacements Ui be a so lu t ion  t o  

equilibrium equations and surface t r a c t i o n  boundary conditions 

of t h e  s h e l l  theory.  Then 

J 

he, kl he ,  k2 ae, k3 

J 

he, kl ae, k2 ae, k3 

- 1 > 0)  and = 0 - a t  n - k 3 - 1  po in t s  ( i f  - n -  k3 ’ -  

= 0 a t  n -  k poin ts  ( i f  - n -  k3 > 0)  3 - 

16 



I along each l i n e  which i s  normal t o  the  midd le  surface i n  t h e  

I undeformed she l l .  A l s o  at  the edge of t h e  she l l  

-a 

= 0 at n -  k2 -  1 po in t s  ( i f  n -  k2- 1 > 0 ) ,  and 
?Ik[ (Q*NB - Q .)d?1 

- - 
as kl ae3 k2 

ak[ (Q3’NB - -3 Q e) .eL1 
k, k = 0 at n - k 2  poin ts  ( i f  n -  k2 > 0)  - - 

n 

along each l i n e  which i s  normal t o  the  undeformed midd le  surface.  

T h e  equilibrium equations and edge boundary conditions of 

t h e  c l a s s i c a l  theory may be wr i t t en  as 

( Q  i j  I j+Fi)C = 0 

Thus the theorem s ta tes  t h a t  i f  a so lu t ion  t o  t h e  she l l  

theory i s  subs t i t u t ed  i n t o  these equations,  both the  e r r o r  and 

i t s  der iva t ives  a r e  zero at a s t a t e d  number of po in ts  on each 

normal l i n e  t o  t h e  midd le  surface.  

ak[ ( Q 3 j  I ,j +F%I 

ae, kl &e2 k2 ae, k3 
The proof of the statement about 

w i l l  be given. The rest  of the theorem can be proved i n  a 

a k -  k ’ [ ( Q 3 j i j + ~ ) C ]  

s i m i l a r  manner. Let E = . For each 
kl k2 ae, ae, 



f ixed el, 8 i t  i s  assumed t h a t  E has i s o l a t e d  zeros .  Otherwise * 

it  has i n f i n i t e l y  many and the  statement of t h e  theorem f o r  E 
2 

i s  t r i v i a l l y  t rue .  
2 2  F i r s t  consider t h e  case n > 1 and l e t  P = h - 8,. From - 

h 
m 

Since P i s  not zero f o r  18 I < h, 3 (2 .8)  one has EPd03 = 0.  
-h 

it follows tha t  E has a t  l e a s t  one zero f o r  16 I < h.  Furthermore, 

s ince i t s  zeros a re  i so l a t ed ,  it has a t  l e a s t  one zero where it 
3 

changes s ign.  

Now consider the  case n > 2. Assume E has only one zero - 
2 where it  changes s ign,  namely 8 = r .  Let p = ( 8  - r )  (h2  - e 3 ) .  

h 3 3 

Again,-/ EPd6 = 0. From the  choice of P, t h e  integrand does 

not change sign. T h i s  i s  a contradict ion so t h a t  E has a t  
3 

-h 

l e a s t  two zeros where i t  changes s ign.  

Proceeding i n  t h i s  manner, i t  'can be shown tha t  E has 

n zeros f o r  le,! < h.  Then using t h e  mean value theorem, t h e  

statement of the  theorem about J 
'kl k2 5 ae, ae, ae, 

follows . 

4 .  Certain dependencies. 

In  deriving estimates f o r  t he  der iva t ives  of the  displacement 

gradients  and s t r e s ses ,  use w i l l  be made of c e r t a i n  dependencies 

which e x i s t  among them. 

. +Uj ) and M i j  = hL 6 
kk i j  

+ 2kLij. Then Let L~~ = T ( ~  
? J  ,i 

18 



the  Li j  and Mij  would be the s t r a i n s  and s t r e s s e s  i f  a f l a t  

p l a t e  and the l i n e a r  theory of e l a s t i c i t y  were being considered 

w i t h  ea = xa. 
i Let Sij = Q - Mij  and Vi = M i j , J .  Then Si j  i s  the  p a r t  

of the  stress which i s  due t o  non-l inear i ty  and the  curvature 

of the  s h e l l .  

p l a t e  and t h e  l i n e a r  theory were being considered w i t h  zero 

Also Vi would be iden t i ca l ly  zero i f  a f l a t  

body forces  and w i t h  ea = x,. 

Let %(k = 1,2,...) be the  s e t  of a l l  funct ions of the  types 

where f o r  funct ions of t he  first type i # 3 and i s  even, o r  

i = 3 and k is odd; for functions of the second and t h i r d  types 3 
j 3  = 0, o r  1 

even and ne i the r  o r  both of j and 1 are  3 ,  o r  j 3  i s  odd and 

exac t ly  one of j and a are  3 .  The various cases mentioned a re  

not a l l  mutually exclusive.  

5 
= 1 and at l e a s t  one of j and 1 i s  3 ,  o r  j 3  is  3 

Let bk(k = 1,2, ...) be the  s e t  of a l l  funct ions of the  

above th ree  types w i t h  no r e s t r i c t i o n s  on the  ind ices .  

Theorem (4.1):  For k > 2 every funct ion i n  % can be - -  
expressed as a l i n e a r  combination of funct ions of t he  types 



where 1 = 0, j i s  even and a # 3, o r  a3 i s  odd and f! = 3 .  
3 - 3 3 

For k > 2 every funct ion i n  bk can be expressed as a l i n e a r  - -  
combination of functions of t he  types 

These l i n e a r  combinations f o r  funct ions i n  ak - and bk - can 

be chosen so t h a t  t h e  following a r e  t r u e .  The der iva t ives  of 

Srs occur only i n  t h e  l i n e a r  combinations f o r  t h e  der iva t ives  

of t he  Qi 

ak-1 

(k3 2 1) Mij The l i n e a r  combinations f o r  3’ 

involve der ivat ives  of V which have at  most k - 1 d i f f e r e n t i a t i o n s  

w i t h  respect t o  0 

involve V o r  any of i t s  der iva t ives .  F ina l ly ,  t h e  l i n e a r  

combinations f o r  

a 3 

3’ ,3a The l i n e a r  combinations f o r  U do not  

a 
involve de r iva t ives  of V which a 

akui 

have a t  most k - 2 d i f f e r e n t i a t i o n s  w i t h  respect  t o  8 i f  3 3 -  
> 2, and no der iva t ives  of V w i t h  respect  t o  8 a r e  involved k3 - a 3 

All l i n e a r  combinations re fer red  t o  have constant coe f f i -  

c i e n t s  which depend only on h p.  
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To prove the theorem use i s  made of the  r e l a t i o n s  

I 1 
(4.2) uiyjk = r M i j y k + M i k y  j -Mjk , i  

1 3  From the  de f in i t i ons  of  L and M 
i j  

and ( 4 . 2 )  follows f r o m  these.  

I Eq. ( 4 . 3 )  a l s o  follows from t he  de f in i t i ons  of M i j  and L 1 3  

- + v i  . Mia ,a 

F r o m  the  de f in i t i on  of Vi 

- -  
(4.4) Mi3y 3 

F r o m  (4.2)  

6 + M  6 h 
f37,a- 3A+* ( M a a y 7  af3 

- Mg31a - 3A+$ Maa,3 a@ 

up13 3h+* Ma&3aB 

aa ,p  a7 

-Maaya 6 f37 11 
6 1  

A 

3 h 
- M33,a + 3A+* "aa,a 

6 1  
A + 

1 h 

1 A 

u3 - - 1 - 
y 3 a  2I-L IM33Ki 3A+* MaaYa 
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The statement of t he  theorem about t h e  der iva t ives  of 

i n  a2 and b2 i s  seen t o  be t r u e  from ( 4 . 4 ) .  Subs t i t u t ing  Mi j 

( 4 . 4 )  i n t o  (4.5),  the  statement of t h e  theorem about t h e  

der iva t ives  of U 

ment of t he  theorem about t he  der iva t ives  of Qi 

follow using the  d e f i n i t i o n  of Si j  and t h e  statement of t he  

theorem about t h e  der iva t ives  of Mij .  

i i n  a2 and b2 i s  seen t o  be t r u e .  The s t a t e -  

i n  a2 and b2 
j 

Dif fe ren t ia t ing  ( 4 . 4 )  and ( 4 . 5 )  w i t h  respect  t o  el and e2,  

t he  statement of t he  theorem i s  obtained f o r  those der iva t ives  

of Mij  and U 

a r e  w i t h  respect t o  8 

der iva t ives  of M,, and Ui i n  a, and b, follow from t h e  preceding 

i i n  a3 and b i n  which not  a l l  d i f f e r e n t i a t i o n s  3 
The statement about t he  r e s t  of t h e  3' 

A J  J J 

and 

\ 
- 
- -MaB,B3 + Va,3 

i 
- -M3a,a3 3,3 I 

! J 

I 

+V - 

\ 
I 

k = hU 

1 h + 

from ( 4 . 3 )  

from ( 4 . 5 )  

: 

j 
The statement of t h e  theorem about t h e  der iva t ives  of Q' 

i n  a3 and b 

t h e  statement about the  der iva t ives  of Mij  i n  a3 and b 

follow again from t h e  d e f i n i t i o n  of Sij  and from 3 

3. 
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The statement of the theorem is  proved f o r  funct ions i n  

a4 and b4 exact ly  as f o r  those i n  3 and b e tc .  3’ 

5.  The parameters used i n  making est imates ,  miscellaneous nota t ion  
and r e s u l t s .  

After picking any point  on t h e  middle undeformed surface 

away from the  edge, the  X-axes can be introduced so tha t  t he  

chosen point  w i l l  be a t  the  or ig in  and the  equation of t he  middle 

undeformed surface w i l l  have t he  form x = f ( x  x ) i n  some 3 1’ 2 

neighborhood of t h e  o r ig in  w i t h  f ( 0 , O )  = 0 and W 0 , o )  = 0. 

After an appropriate r i g i d  transformation of t h e  deformed s h e l l  

(moving surface t r ac t ions  and body forces  w i t h  t h e  deformed s h e l l ) ,  
hi all 

one also has u i ( O , O , O )  - -* ,  andax,=ax; j a t  3 = (o,o,o). 
J I 

Let ea = x f o r  t he  remainder of the  paper and choose D a 
so tha t  it i s  less than o r  equal t he  dis tance from the  X -axis 

t o  the  boundary of the  middle undeformed surface and so t h a t  
3 

1 2 2 
de t (g i j )  f o r  el + e2 - < D2 (observe t h a t  d e t ( g .  1 J  .) = 1 at  

the  o r i g i n ) .  
1 Choose R so that If,,! 2 E , l f , e 7 1  L-$ e t c .  f o r  

2 2 
1 8 + - < D2 and f o r  as  high an order of der iva t ives  as needed 

i n  the  following. 
1 2 R e s t r i c t  h so that  c 2 f o r  le I < h and e: + e: - < D . 3 -  



Consider she l l  thicknesses,  surface t r a c t i o n s ,  body 

forces ,  and displacements which sa t i s fy  t h e  equilibrium equations ‘ 

of t h e  s h e l l  theory such tha t  

le,l < h and k = 0,1 ,2 , . . .  up t o  t h e  highest order  required i n  t h e  

following where Y i s  Young’s modulus and eo i s  a constant which 

satisfies 0 < eo < 1, which i s  small enough f o r  t h e  following t o  be 

va l id ,  and which depends only on the  s t r a i n  energy W and n. 

- 

Let 8 = max(h , , 6) so  that  8 i s  a funct ion of D 
t h e  arguments - , 
decreasing as E increases .  

, E .  For - h and D f ixed ,  8 and 5 a re  non- h h  

Let E be the smallest  number such that  
f 

I 

E i f  k i s  even and i # 3 ,  yek+’ 
3 

or k i s  odd and i = 3 8v1hk+ 
3 

~ i f k  = O a n d i = 3  yek+2 
ei+2hk+1 3 

otherwise yek 

c 
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where k = 0,1,2, ... up t o  the highest order required i n  the  

I 
following. 

-om (5.1) it follows t h a t  6 5 eo and hence 8 2 Q0. 

Let d = 3 h. Then listing some r e s u l t s  

( 5 . 3 )  

From (5.2) and the de f in i t i on  of Gi, 

I (5.4) 

i f  k;t is  even and i f 3,  o r  
k is odd and i = 3 

= O = d i = 3  
3 

E otherwise 
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for k = 0,1,2, ... to the highest order needed, and f o r  

01 2 + 0; < D 2 and le,/ < h. Here and in the following, the - - 
notation A = @(B) means A > 0 and B > 0 and there is a - - 
constant k depending at most on n and W such that A < kB 

in the domain under consideration. The constant k is allowed 

- 

to be dimensional f o r  convenience. 

If the left hand sides of inequalities (5.1) are much 

less than the right hand sides, then 

than 00 and 8 will be much less than O O .  Hence both E and 
h - will be small. Estimates for various quantities will be d 
given in terms of E,  h, and d. 

-will be much less 

8Ui 
Let - 

- + pij* Let pij - - axk tkj so that qij 
i be 8-components of pseudo-tensors whose i i i 
j Ej , T j  , Zj , and P 

and pij respectively. Also ij’ X-components are eij, tij, z 

Then using the contraction principal f o r  pseudo-tensors, 
I 

(5.5) 



one has ij’ From the  d e f i n i t i o n  of z 

Z i j  = W56ij + W6eij -t- ‘Teikekj 

and s andW where W w6’ and W depend only on sly s2’ 

is  quadrat ic  i n  t h e  e 
5’ 7 3’ 5 

Hence ka while w6 i s  l i n e a r  i n  the  e 
kk? 

and, i n  view of si as given i n  (5 .5 ) ’  it ‘follows that Zi is 

quadrat ic  i n  t h e  $ w i t h  coef f ic ien ts  depending on the Ek 
J 

a =  
i 
J When the  lE!l a re  s m a l l  enough, t he  equations f o r  t h e  T J 

can be inverted giving Ei as a ’ func t ion  which is  l i n e a r  i n  

t h e  T w i t h  coe f f i c i en t s  depending on t h e  Tk Therefore 2 

is  a l s o  quadrat ic  i n  t h e  Tk w i t h  coe f f i c i en t s  depending on 

the T i f  t he  IE 1 a r e  s m a l l  enough. 

j 
k i 
J? a -  

l? 
k i 
a 5 
For i = Oyly2y.o. l e t  Gi denote any f’unction of e2’ e3 

such tha t  
/ 

k a G~ 

be, kl be, k2 be, k3 
= o ( . J  

f o r  k = 0y1,2,.00 t o  t he  highest  order  needed and f o r  elY e2’ Q3 

i n  t he  domain being considered. 

Then from (5.3) 



3Gi 
ZK = Gi+l 9 

G . G  = Gi+j , G i + G i  = Gi , 
3 1 3  

= c0 for le31 < h . 2 = Go and 8 3 2  G - 

(5  - 7 )  

[ e3G1 
\ 

For el 2 + e2 2 < d2, 11- 1 = le f (B ,B ) I  = e($ = 8(eoe) ,a B Y *  1 2  - 
from (5.3).  Treat ing the  higher de r iva t ives  i n  a similar 

manner, it i s  seen t h a t  f 

it follows t h a t  

= Go. Using (5.7)  a n d ?  = (e,,e,,f), ,a 

and therefore  

a r e  a l l  Go . 6aB 
af3 - i i  i i  

Y gap- 6ap Y and g j 
(5.8) a j - 6 j  , Aj - 6  
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Also 

= G1 

Consequently 

From these 

U = 6 +Go (remember B = 2 = 0 = 1). 
(5.10) C = l+Go aB 3 U E$ 

If A denotes any s e t  of f’unctions of e,,e,y@3y then 

Hk(A) is used t o  denote any sum of terms of the s o r t  
11 

(1 = Oyly2y...yk) where a is i n  A. Also Jk(A) a v 

Gk-l a, a ,  
ae, ae, 

i s  used t o  denote any sum of terms of t he  s o r t  
a a -  a ( 1  = Oyly2y...yk). Then 
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If A denotes 

denote the set of 

A' denote the set .. 

any set of functions of el,e,,e3, let A 

all functions a where a is in A, and let 

of all functions a where a is in A. 
,a 

Yi 
A' denotes the 

Y aB; 
Similarly A denotes the set of functions a 

set of functions a,ai; and A" denotes the set of functions 

a for a in A, etc. The notation A will denote A with 

k dots, and A will denote A with k primes. If A denotes a 
, ij 

single function, A will also be used to denote the set con- 

sisting of the one function. Then 

meaning. The notation A denotes 

a and A denotes the set of all 

where a is in A. 

Y 3  

Y3 Y 3  

A, A', etc. have the above 

the set of all functions 

functions a , a3 Y etc Y 

Let A,B, and C be sets of functions of el,e,,e3. 
AB is used to denote the set of all functions ab where a 

is in A and b is in B. 

sets is defined. 

Similarly the product of more than two 

Notation such as 

means each function of A is a linear combination of functions 

from the set BB' (with constant coefficients depending at most 

on n and W) plus a linear combination of functions from B (with 

coefficients of type Hk(C)) plus a linear combination of functions 

of type Jk(B)H (C) (with constant coefficients depending at 

most on n and W). 
a 
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Similar ly  if a i s  a function, t he  nota t ion  

a = BB' + B H ~ )  + J,(B)H~(c) 

means a i s  a l i n e a r  combination of the  same type mentioned 

above. 

Now l e t  U,L,M,E,T,P,Q,R,S,V,F, and be the  s e t s  of all 

respect ively.  

From (1-71, 

i i 1 i 
U I = ( U  + r i k U ' ) B 5  = Ui ,5 + G I U +  GoU = U , j  + J1(U) ,k 

using (5 .9) ,  (5.10), and (5.11). A l s o  

j a  k i U i l J  = gikg U 1, = U , j  + J1(U) 

us ing ( 5 . 8 ) ,  (5.11), and ga3 = gu3 = 0 ,  g33 = z3 = 1. 

With these and (5.5) one has 

f 2 R = J1(U) + U ' U '  + U'J1 (U)  + J1(U)  

T = M + R + Z  

P = U"T + T J ~ ( U )  

S = R + Z + P  

Q = M + S = T + P  



From (5.4) and (5.3) 

Frequent use will be made of the following functions. Let 
/ 

I where k = 4,5,6, ... 

= 0 otherwise (k = 1,2,3, ...) 

Then C k  and its first derivatives are continuous everywhere. 
5 will be used to denote any one ck. 

lAI2 will denote the sum of the squares of all functions in A 

Let A be any finite set of functions of el,e2,e3. Then 

with IAI - > 0, and !AI: will denote the iiltegral of IA1 2 over 

the region where ck # 0 and le3 I < h ( !AIk > 0). 

on llAlk is omitted if the range of integration is clear from 

the context or if all values of k are permitted. 

The subscript - - 
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~ ~~ __ - 

Easi ly  es tabl ished r e s u l t s  f o r  t h e  functions rk a r e  

(5.15) 

W 

I r l  L 1 

} f o r  k = 3,4,5, ... 

If a, b, and c a re  any pos i t i ve  funct ions,  t h e  nota t ion  

a = e ( b )  + a ( c )  

mean t h a t  f o r  each k > 0 there i s  a constant > 0 

depending only on k, W ,  and n such that 

a < x b  + k c  . - 

Frequent use w i l l  be made of t he  r e l a t i o n s  

lml = G ( I A I )  + d I B 1 )  

IABII = C( RAII)  + a( iiBn) 

where A and B are f i n i t e  sets of funct ions.  
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L e t  Ak = maxIlC all where the  maximum i s  taken over a l l  

Let Bk = maxllckbIIk where the  maximum i s  
k k  

functions a i n  ak. 

taken over a l l  functions b i n  bk. Here k = l,2,3,. . . . 

6. An estimate f o r  t h e  L2 norms of Vi and i t s  der iva t ives .  

In  t h i s  sec t ion  t h e  following i s  es tabl ished f o r  k z 0 .  - 

6.1 .f k3 = 0 ,  o r  i f  k 

tnd i = 3. 

i s  even and i # 3, or i f  k i s  odd 3 3 

c 

A l l  in tegra t ions  a re  over t he  region where < # 0 and lQ,I < h. 

T o  e s t ab l i sh  these,  use i s  made of t h e  expansions i n  terms 
- 

of Legendre polynomials of t he  various funct ions.  
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If g(QlYQ2,Q3) is  defined f o r  I 5 h, l e t  3 
1 

dk k -k (x2- 1) Pk(X) = - is  t h e  kth Legendre polynomial. 1 
2kk! dx 

Then from (2.8) 

f o r  k = 0,1,2 ,..., n. 

Since P k ( + l )  = +1 and P k ( - l )  = (-l)k, t h i s  becomes 

k+l + (-1) [(&a3- @)C] 
G3= -h 

f o r  k = 0,1, ..., n. 

Since t h e  r i g h t  hand s i d e  does not  change as k increases  

by two's, one obtains  

( k =  0,1,. . . , n ) ,  
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one 

k=O 
k+n odd 

From t h e  i d e n t i t y  

has 

k=O 
k+n odd 

Hence 

e 
P’ ( 3 ,  ( k )  k+l  h 



n n 0 - 
k=O k=O 

- 
'a = L v a ( k )  P k ( h '1 = L (Qajy j  - S a j , j  ) ( k )  P k (e3)(from h the 

definitions of Sij and vi) 

n 
83 = LJ ~ [ C Q ~ ~ I ~ + J , O +  s ' ] ( k ) p , ( r )  from (6.4) 

, 

k=O 
n 

r e  11 

( '11 (&"j l j+ Fa)C] (k) from (6.2) 
1 

+ 1 2k+l 'k+l h 
k=n-1 

= L [ - F a + H O ( F ) + J 1 ( Q ) + S r ]  (k)  P k ('3) -F 
k=O 

from (6.4) 

I 

For k = n- 1, n 

I 

a ) ]  (from the definitions of M 1, , 
va(k) = [ M ~ , p + c L ( u  ,33+' ,3u ( k )  a3 

is an (n-2)nd degree polynomial in 8 if n > 2 3 - Y33 
since ua 
and is zero if n = 1. l 
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Similarly 

k=O 
(6 .3  

k=n 

From (1.8), ( 5 . 9 ) ,  and (5.10) 
c 

1 1 
= vi+ s + J,(Q) 

Considering Vi as a function of displacements, it is seen 

that V, is an nth degree polynomial in 8 3 and V 3 is an (n+l)st 

degree polynomial. Hence 

I 



Hence 

k=O 
( 6 . 5 )  n 

e 3 .  Hence 

n+l 

k=n-l 

Similarly 

k=O 

k=n 

For k = n, n + l  

are both (n - 1)st degree polynomials in Y33 and U 
9 83 since U 
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Lemma (6.7) :  Let A - and B be f i n i t e  s e t s  of funct ions - 
( t h e  number depending only on n )  such tha t  

f o r  every function a i n  A where each bi i s  i n  By pk i s  a k th  - - 
degree polynomial whose coe f f i c i en t s  depend only on n, and m - 
depends only on n. Then - 

f o r  a l l  k fo r  which the  der iva t ives  a re  continuous. 

From Bessel ls  inequal i ty  

so t h a t  



Since 

f r o m  t h e  p 

m - -  e, 

i k=O 

*evious argument. 

Next observe tha t  f o r  k - > 1 

-h 

s ince  (2k+ l ) P k ( x )  = Pk+l(x) t - Pk-l(x) I and Pk+l(kl)- Pk l ( k l )  = 0. - 
But 

m fi 

i k=l 

Then flA,,II = 8( llB 11 by t he  argument used i n  the  first 93 
p a r t  of t h e  lemma. The d i f f e r e n t i a t i o n s  can be repeated t o  

obta in  the  lemma. 

From (6.5) ,  (6 .6) ,  and the  lemma 
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and ( 6 . 1 )  follows f r o m  ( 6 . 7 )  f o r  k = 0 using (5.4) and (5.13). 3 
If k3 = 1, Theorem (4.1) gives 

Thus (6.1) follows for k 

case k = 0. 3 

= 1 from (6 .7 )  using ( 6 . 1 )  f o r  t he  3 

4 2  



For k = 2, Theorem (4.1) gives 3 

Thus (6.1) follows for k 

cases 5 = 0,l. 

= 2 from (6.7) using (6.1) f o r  the 3 

Proceeding in this manner (6.1) is proved for all k 
3 -  

7. L2 estimates for functions in the set M (k)  . 
For k > 3 the following is established: - 
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where a l l  in tegra t ions  are over t h e  region where Ck # 0 and 

le3/ I I 
I 

Using t h e  divergence theorem, 

From ( 2 . 8 )  

8 =h 
j J  ' 'k( CQi 3 Ui) e3=-h delde2 

Thus 
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By exactly the  same argument 
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Next 

31 - 2 i B 
(ck)ya(cQ a),gala2.. .ak-2Uyiala2.. .ak-2 

i B 
+ FJJ ( ~ E ) , ~ ( c Q .  a),Bala 2...ak-2uyiala2. ..%-2 

using the  f a c t  t h a t  Li j  is a l i n e a r  combination of the  M 
ka 

i i i  i i  i Since Q a = T,+P a = Q~ + P  a- P, = Q ~ ~ +  H ~ ( Q ) +  P +  H ~ ( P )  

from (5.8), then CQia = CQai+Ho(Q)+P+HO(P) using (5.10). 

46  
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Thus 

+ rr 
h2 
d 

+ a[ -2 

,iula2...a k-2 
UP 2 U 

ck),a(cQ i),pala2.. .a k-2 

Using (2.8) and (6.4) again 
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By the same argument 

But 
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Thus 

y pap2. . . a k- 2 ,iala2...a k-2 I UP 

Next 

Collect ing results 
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Using L i j  . + U j  ) and the symmetry of Ti', 
=??(' , J  Y i  

= ( T . + P  i i i  . ) U  = (T i j  + G O T + P  i i  j ) U  
J 3 , j  

Qi jUi 

= T i j  L~~ + [ H ~ ( T )  + P ] U '  

= [ T j  i + Ho(T)]Lij + [HO(T) + P]U 1 

= TjLij  i + [HO(T) +P]U 1 

= (M. . + R +  z ) ~ ~ ~  + [ H ~ ( T )  + P I U '  
1 J  

= MijLij + ( R +  Z ) M +  [H~(T)+ P I U  ' 

But 

M. .L = hLkkLii + ~ ~ L L ~ ~ L ~ ~  > 2pILI 2 1 3  i j  - 



- - 

so that 

lLI2 = e(M. .L. .) . 13 1 3  

Since 1Ml = 6(lL/), it follows that 

1MI2 = 6(M. .L. .) 
13  1 3  

= O{Q i i  ju ,j + (R+ Z)M+ [HO(T) + P]U'). 

By the same argument 

Since 

k-1 Ui , jala2.. .a 
i 

('Q j),a1a2.. .a k-1 

the above becomes 

Using this with (7.2), one obtains (7.1). 



8. L2 estimates for funct ions i n  ak and b k ( k  = 2,3) .  

2 Consider t h e  range 6; + e: - < d , le3] - < h, and l e t  

C = = C* = C3' 
Then 

I x , ~  = leal = g ( d )  by choice of ea  
3 k  k 

Ix31 = leilmaxlKl 1 = 8[  leilmaxl%(si -e3bi) 1 1  
1 

= 6( l e i ]  163i + G o l )  = 8 ( h  +Q08d) = 6 ( h )  

from (1.5) and (5.8-9) 

J 

i d2 
l U i l  = IA.u.1 J J  = @(+i- E )  from (5.8) 
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From IMl = 0 ( ~ )  and the appendix 
f l  

If A and B a re  s e t s  of functions,  t he  nota t ion  A Coef(B) 

w i l l  be used t o  denote a l i n e a r  combination of the  funct ions 

from A w i t h  coe f f i c i en t s  depending on the  funct ions i n  B and 

on W. Then s ince 1EI = e(f$) f r o m  ( 8 . 1 ) ,  2 i is  a quadratic 5 
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function of the Tk with coefficients depending on the Tk and W 

for eo small enough (see the discussion in section 5). 
a a 

Thus 

r 2 
Z = T Coef(T) 

(8.4) 



Using (8.2) and (8.4) 
/ 

I 
L 

= 0(eoedA3 + 

From (6.1) 

= a(& f i  + deoeA3) + o(dA3) 

I 
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Next 

(8.7)" 

U 

= J 3 ( U ) + U ' U ' " +  U " * + U " J 2 ( U ) + U 1 "  J l ( U ) + U ' J 3 ( U )  
2 + J 2 ( U )  + J 1 ( U ) J 3 ( U )  f r o m  (8.4) 

= e[e , e (  I M I I  1 + Tilw'l, 1 + + + I M  t 2  I 3 
d 

= c"(e,eB3 + - E @) f r o m  ( 8 . 2 )  d 

= e ( B j  d + 6; I]<T" 11 ) 
= O(B3 + - E '@) for Go s m a l l  enough 

= C [  I l C ( M "  + R" + Z " ) ] ]  

d 

= e(Q 2 B3 + fi&) d 



= (y-+E E A + eEBj) from (8.7) 
fi 

Hence 

for eo small enough. 

R e w r i t i n g  some results of (8.7) w i t h  t h e  a i d  of (8.8) 

and der iving others 

(8 .9)  
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By the divergence theorem 

I P P P  r\ .. ." .. . .. .. I 

2 
= ocF+ h E  

Hence 

2 
h E  

d 
= 6 ( 7 +  

2 

= e ( F +  
S imil arl y 



Col lec t ing  terms, (7.1) becomes 

From (6 .1)  

f i  + Q2A ) + (5'5) . = 0 3  

From (4 .1)  
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The ref  ore 

E B3 = o(-) from (8.8) 
f i  (8.10) 

9 .  L2 estimates f o r  functions i n  a4 and b4 .  

L e t  < = c4 i n  t h i s  sec t ion .  From (5.15) r = c(r,r), 

( 9 . 1 )  

Let 

Then 
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(9.2) 

= 4(M1 + 8 

= 0042 + 

from (8.4) 

} from (8.9) 

from (8.2) 

\ from (8.4) U 

IrJ2(U)I = S(0 8M + 5) from (8.4) 0 2  

From (8.3) 
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But 

= o(-M2 E + 9) from ( 9 . 2 )  
f i  

T h i s  type of reasoning i s  used repeatedly t o  obtain 

p 1 1 1  = U'T" '  +U"T" + U r l 1 T 1  + U t l T  + T J Q ( U ) +  T ' J 3 ( U )  + T " J 2 ( U )  

+ T I ~ ' J ~ ( U )  
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From (4.1) 

and f o r  Go small enough 

(4 -3 1 

Rewriting some of the previous results and deriving others 
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E + -M2) d E 
h 4  llCTrn 11 = 0 ( - A  + - 

d f i  f i  .. - .. ." 
P = U'T  + U"T + U"'T + U""T + T J q ( U )  + TJ3(U)  + T J 2 ( U )  

+ ? J l ( U )  



U s i n g  t h e  divergence theorem, 

Since 

the  above becomes 

and 
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Similar ly  

Since 

and 

t h e  above becomes 

and 

2 
2 1 2 1 A2) 

3 + 7  2 
= Qch" + a ( A  + 2  A -7 4 d  

66 



Next 

Collecting terms (7.1) becomes 

F r o m  (6.1) and the above 

F r o m  Theorem (4 -1) 

= 0 (+ h e  + Q ~ A ~  +E ~2 +- de M1) + a(A4) 
d fi h f i  



t 

Thus 

M1) 

M1) 

A4 = o(+ + -  E 
d s  

d fi 

ed  d2s 
M2 + 

h2 fi 
B4 = o(- E +- 

d f i  h f i  

(9.4) 

f r o m  (9.3).  

From ( A . 5 )  

2 

M1) 
1 sd d s  

d2 d fi h fi M2 -t h2 fi 
E +- = O(BQ + -  B = o(- 

wO 
= O(- +- M2 +x 

d f i  6 
so t h a t  

E 2 2 d  M2 = O(5 + Q0M2 + Qo M1) ; 

(9 .5)  M2 = o(! + Qo 2 d  M1) for Qo small enough. 

Also f r o m  ( A . 5 )  
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using 

% =  

( 9 . 5 ) .  Hence f o r  Qo 

- 
M1 - 1 % =  

and from ( 9 . 4 )  

( 9 . 3 )  I 
& B4 = a- I d f i )  * 

10. Pointwise estimates for finctions in ak and bk. 

Continuing to let 5 = fq, ( A . 5 )  gives 
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From (6.5)  and (6 .6 )  

lrvl = &[max 1rMI + -  < S I ~  + max 

From Theorem ( 4 . 1 )  for a i n  a2,  

Ira1 = ~ ( m a x  1rMl +max I ~ V  

+ QoQ UBX IrQ' 1 )  = 

+ max 

and far b i n  b2 

Therefore 

so t h a t  

and 



Hence f o r  fi: + QZ 5 d/4 and lQ31 2 h, 

(10.1) 
la I 

Ib I = a(:) fo r  b in be . 

Siiwe aUi/axj = 

j 
i t  follows that uil 

a 3 

&I /axi and = 6 i at  t h e  or igin,  J' J 
= &,/axj and Ui I = U j  I a t  t h e  or ig in .  3 

Thus UA = UJ + J1(U), LiJ = n ( U  1 i  + U i )  = Ui + J1(U), 
Y J  Y i  Y Y Y j  

and I U I  I = 6[ ILI+IJ1(U) I ]  = O(E) a t  the  or ig in .  

By Taylor 's  theorem 

From (10.1) and t h e  f a c t  that IU1l = @(e)  at the  or ig in ,  

J 
Estlmates can now b e  obtained for  the L2 n o m  of f'unctions 

i n  a and b and pointwise est imates  can then be obtained f o r  

t he  f'unctions i n  a and b the  procedure being similar t o  
5 5 

3 3' 



t h e  work done i n  Sect ions 9 

manner, pointwise estimates 

i n  ak and bk f o r  k as large 

and 10. Continuing i n  t h i s  

can be obtained f o r  f’unctions 

as one pleases. 

Actually, t h e  ca lcu la t ion  of L2 estimates f o r  f’unctions 

i n  ak and bk i s  easier f o r  k 2 6 s ince  q u a n t i t i e s  

such as M1 and M2 do not need t o  be  introduced as i n  t h e  

cases k = 4,5. The pointwise estimates obtained are 

(10.2) 
) f o r  b i n  bk E 

h dk-2 
lbl = 13( 

- 
2 2  f o r  k l  1, l Q 3 1  5 h, and {01-@2 s m a l l  enough. 

The value of 00 and the constants i n  t h e  order r e l a t i o n s  

(10.2) depend of course on t h e  la rges t  value f o r  k f o r  

which one wants (10.2) t o  be va l id .  

11. Special  comparison of the  she l l  theory w i t h  t h e  
c l a s s i c a l  theory, some improved estimates, and t h e  
importance of t h e  low degree terms i n  the  displacements. 

The comparison w i t h  the c l a s s i c a l  theory made i n  t h i s  

s ec t ion  i s  ca l led  spec ia l ,  because i t  i s  v a l i d  under more 

r e s t r i c t i v e  conditions than t h e  comparison made i n  Section 3 .  

The comparison i s  given by 



(11.1) 

(11.2) 

L 

i f  n-k > 0 . 3 -  

n-k3-1 E 
dk+l 

c) { :: n-k3-2 dk+l E 

if n is odd 

i f  n is even 

i f  n is odd 

i f  n is  even 

- n+l E if n is odd 
dk 

i f  n i s  even 8 -+h 3-- 

a l l  of which are v a l i d  for 10 3 -  1 < h and for &F2 
small enough. 

The bnproved est imates  of  t h i s  s e c t i o n  are 
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akQa 
ael kl ae2 k2 

a h &  
= O(J-$ 

U 

a ( Q  3 - i 3 )  

ae, kl ae, k2 

The importance of t h e  low degree terms i n  t h e  displace- 

ments and 
4 

Here U’ r kl 

4 (11.4) 

t h e i r  der iva t ives  i s  given by (11.4). - 
i s  defined by Ui = U r k l  i ( w 3 ) k .  

k 

h k-1 E (3’ 7 f o r  k odd 

(5) ~--p for  k even h k  E 

74 



If a so lu t ion  t o  the s h e l l  equations i s  subs t i tu ted  i n t o  

the  equilibrium equations (2.3) of  t h e  c l a s s i c a l  theory, then 

(11.1) gives estimates for t h e  e r r o r s  and those der iva t ives  

3' which do not  have too many d i f f e ren t i a t ions  w i t h  respec t  t o  8 

I f  the stresses, body forces ,  and t h e i r  der ivat ives  which 

appear i n  (11.1) are not  of lower order  than indicated by 

(10.21, (11.3), and (5.41, then (11.1) is s ign i f i can t  i f  it 

gives  lower order r e s u l t s  than t h e  aforementioned estimates. 

Since Q 

example t h a t  when n = 3 the first est imate  is s i g n i f i c a n t  

i j  + H~(Q) f r o m  (6.41, it follows f o r  3 '  = QL 
f o r  k = 0,l and the second est imate  i s  s ign i f i can t  for 3 
k3 = 0,1,2. 

by a f a c t o r  of (h/d)2 than the  estimates using (10.2),  (11.31, 

and (5.4) .  Furthermore,using t h i s  c r i t e r i o n ,  estimates (11.1) 

For t h e  above cases t h e  estimates are smaller 

are not  s i g n i f i c a n t  f o r  any value of k3 when n = 1,2.  

Similarly i f  a solut ion t o  the  shell  equations i s  

subs t i t u t ed  i n t o  the boundary conditions (2.3) of t h e  

c l a s s i c a l  theory fbr 8 

f o r  the  e r r o r s  and t h e i r  der ivat ives .  If t h e  stresses, 

= + h, then (11.2) gives  estimates 3 -  

sur face  t r ac t ions ,  and their  der iva t ives  which appear i n  (11.2) 

are not  of lower order  than indicated by (11.3) and (5.41, 

then (11.2) is  s i g n i f i c a n t  i f  i t  gives  lower order  r e s u l t s  

than the  aforementioned estimates. Thus (11.2) is  s i g n i f i c a n t  
2 f o r  n = 3, the  estimates being smaller by a f a c t o r  of (h/d) 

than those obtained using (11.3) and (5 .4 ) .  Again. (11.2) is  

not  s i g n i f i c a n t ,  according t o  t h i s  c r i t e r ion ,  i f  n = 1,2. 
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I n  the exceptional cases where t h e  s t r e s s e s ,  body forces ,  

surface t rac t ions ,  and t h e i r  der iva t ives  appearing i n  (11.1-2) 

a r e  of lower order than indicated by (10.2), (11.3), and ( 5 . 4 ) ,  

t h e  estimates (11.1-2) w i l l  s t i l l  be  s i g n i f i c a n t  for n large 

enough; however, bar r ing  these exceptional cases ,  (11 . l -2 )  

are s ign i f i can t  f o r  n - > 3.  

From (11.3) i t  is  seen t h a t  t h e  t ransverse shear stress 

Qa and i t s  der iva t ives  tangent t o  t h e  m i d d l e  surface a r e  of 

lower order than has been claimed f o r  t h e  o ther  stresses and 

t h e i r  der ivat ives  tangent t o  t h e  m i d d l e  sur face .  Also t h e  

transverse normal stress Q3 is  approximately equal t o  t h e  

f'unction which var ies  l i n e a r l y  between the  prescribed 

transverse normal stresses at t h e  faces ,  t h e  same r e s u l t  

being t rue  f o r  t h e  der iva t ives  of  t h e  t ransverse normal stress 

tangent t o  the  m i d d l e  surface.  These r e s u l t s  are analogous t o  

r e s u l t s  shown t o  be  t r u e  f o r  so lu t ions  t o  t h e  c l a s s i c a l  theory 

when the surface t r ac t ions  and body forces  a r e  zero [ see  p.3,f t . l .  

3 

3 

Fina l ly  (11 .4 )  shows tha t  t h e  lower  degree terms i n  t h e  

displacements and t h e i r  der iva t ives  w i l l  dominate t h e  higher  

degree terms. 

To prove (11.1) first observe 

from (6.4)  and hence from (10.2) 

k i  j a Q ; I  

i f  

if 

J 
5 k2 k3 

ae, as, a0 3 

k = 0, o r  
i # 3 and k3 

3 i = 3 and k 

3 i # 3 and k 

3 i = 3 and k 

3 
i s  even, or 
i s  odd; 

i s  odd, o r  
i s  even. 



Using (5 .4)  and (5.10) i n  addi t ion  t o  t h e  above 

E if k = 0 ,  or 
3 k+l 

CJ J 
i f  i = 3 and k i s  odd; 

i f  i # 3 and k is odd, o r  
i f  i = 3 and k is even. 

3 

k 3 
3 

E 

From Theorem (3.1) and t h e  mean value theorem, one 

obta ins  

if n-k3-1 > 0, and 

if n-k > 0. These are also t r i v i a l l y  true when n-k3-1 = 0 3 
and n-k = 3 

Using 
r 

0 r e spec t ive ly .  

(11.5) these become 

ak[ ( Q 3 .  I j+ F?C] 
J 

aQl aQ, aQ kl k2 k3 
3 

n-k 
E i f  n is odd k+l 

n-k3-l E 
i f  n i s  even dk+l 

i 
i 
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Now l e t  n be odd. From (11 .6)  

and 

s ince C > 1/2 (see Sect ion 5 ) .  This i s  t h e  first formula 

of (11.1) when k = 0 and n i s  odd. 

Next f o r  n odd 

Hence f r o m  (11.6)  and the  above I 
I 

and I 

Proceeding i n  t h i s  manner t h e  remainder of (11.1) can be 

proved. 

From ( 2 . 7 )  

With t h i s  and (ll.6)9 one has 



. f 

(11.7) 
i 

3 -  - i f  n i s  even 
dk 

Then (11.2) follows from (11.7) 

(11.1) followed from (11.6).  

Next f r o m  (11.2) and (5.4) 

h n+l E 
(3) - if n is  odd 

dk 
0 

E i f  n is  even 1 (3) 2 
in t h e  same way that 

f o r  n = 1,2, ... 
5 -  

s o  t h a t  f r o m  Taylor's theorem 

+ h  max 

0 -h 3- 

giving t h e  first p a r t  of (11.3). 

U s i n g  (10.2) and (5.121, i t  can b e  shown that 
' i  = QJi + P  (k) h s  1 IP I = o(--). Since Q dk = Tj 
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j then Qi = Q + Go& + P + GOP. Thus 
j 

and the second pa r t  of (11.3) fo l lows .  

The t h i r d  p a r t  of (11.3) fol lows from (11.2)  and 

Taylor 's  theorem. 

From Q3313 = Q33y3, (ll.l), t h e  second p a r t  of (11.3), 

and (5.41, 

This completes the  proof o f  (11.3). 

To obtain ( 1 1 . 4 )  one simply observes t h a t  

hk 
k! 
- 

0 =o 
3 

and uses (10.2) if a+k 0 ,  and IUl = o ( r  d2 E )  if 

f?+k = 0 ,  i = 3 .  

If k+J = 0 and i = 

lUal = or le, 

80 

follows from 



I 

Appendix 

Here are presented f i v e  t r i v i a l  modifications of r e s u l t s  

from t h e  appendix i n  [ see p .  3 ,  f t  .] , and an e a s i l y  proved 

r e s u l t  f o r  polynomials. 

L e t  A be a f i n i t e  s e t  of functions of Ql,Q,,Q3 defined 

i n  t h e  region where <, # 0 and lQ31 5 h.  

L e t  L: = t, and = sup ] A I .  Then 

1 d 11r~,311 = 111111, + 5 IIr All + ; llrA,3311 1 

(Sobolev's i nequa l i ty ) .  

I f  i n  addi t ion  t h e  functions i n  A are a l l  polynomials 

i n  Q whose degree depends only on n, then 3 
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To prove ( A . 6 ) ,  

degree i s  m ( then m 

l e t  a be a polynomial 

depends on n ) .  Say 

a = )- bi(?Ii . 
8 m - 

i=o 

in A whose 

i 
= - h (i = 0,1,. . . , m )  . 3 m  L e t  ai be t h e  value of a f o r  0 

Then 

i = 0,1,. . . , m  . b.(-) i j  , 
J m  

ai = 

j = o  

Treating t h e  above as a system of l i n e a r  equations w i t h  

t h e  b .  as unknowns, i t  i s  well known t h a t  t h e  determinant of  

coe f f i c i en t s  i s  not zero s o  t h a t  t h e  b are l i n e a r  combinations 

of t h e  ai. 

depend only on m (and hence only on n ) ,  each bi  i s  a l i n e a r  

combination of t h e  a w i t h  coe f f i c i en t s  depending only on n .  

Hence 

J 

j 
Since t h e  coe f f i c i en t s  of t he  above equations 

j 

B u t  

s o  t h a t  ( A . 6 )  i s  e s t ab l i shed .  
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. l3 .  Abstract - continued from page 83 

I equations and surface t r a c t i o n  boundary conditions of the shell 
theory.  

dimensional theory by examining the e r r o r s  which r e s u l t  when 
displacements s a t i s f y i n g  the equilibrium equations and surface 

i n t o  those of the c l a s s i c a l  three dimensional theory. 
E, and Ef denote any e r r o r  r e su l t i ng  from an equilibrium equation, 
a surface t r a c t i o n  boundary condition a t  the edge, and a surface 
t r a c t i o n  boundary condition a t  a face,  respect ively,  of the 

have a stated number of zeros along each l i n e  normal t o  the middle 
surface,  the number of zeros depending on n and the number of 
d i f f e r e n t i a t i o n s  of the  e r r o r  w i t h  respec t  t o  8 Furthermore, 
i f  the s h e l l  thickness  and deformation are small enough, and i f  
the  body fo rces  and surface t r a c t i o n s  a t  the f aces  and their  
de r iva t ives  are small enough, then, a t  po in t s  not  too near  the 
edge, Ef and i t s  de r iva t ives  a r e  s i g n i f i c a n t l y  small i f  n i s  l a r g e  
enough, and E and i t s  de r iva t ives  are s i g n i f i c a n t l y  small 
throughout the thickness i f  n i s  large enough and there are not 
too  many d i f f e r e n t i a t i o n s  of E with respec t  t o  8 Also, under 
the  previous r e s t r i c t i o n s ,  t he  low degree terms i n  the displace- 
ment polynomials and their  der iva t ives  are more s i g n i f i c a n t  than 
the  high degree terms a t  po in t s  not too near the edge (at  least 
t h i s  i s  always t r u e  if the difference i n  degrees of the two terms 

The shel l  theory i s  compared w i t h  the c l a s s i c a l  three I 
I I 

I t r a c t i o n  boundary conditions of the shell theory are subs t i t u t ed  

Let Eq, 

1 
I 

I c l a s s i c a l  theory. It i s  shown that E E, and the i r  de r iva t ives  9' 

I 

I 3' 

I -  

I 9 

9 3.  

l i s  greater than o r  equal two). 

. 
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